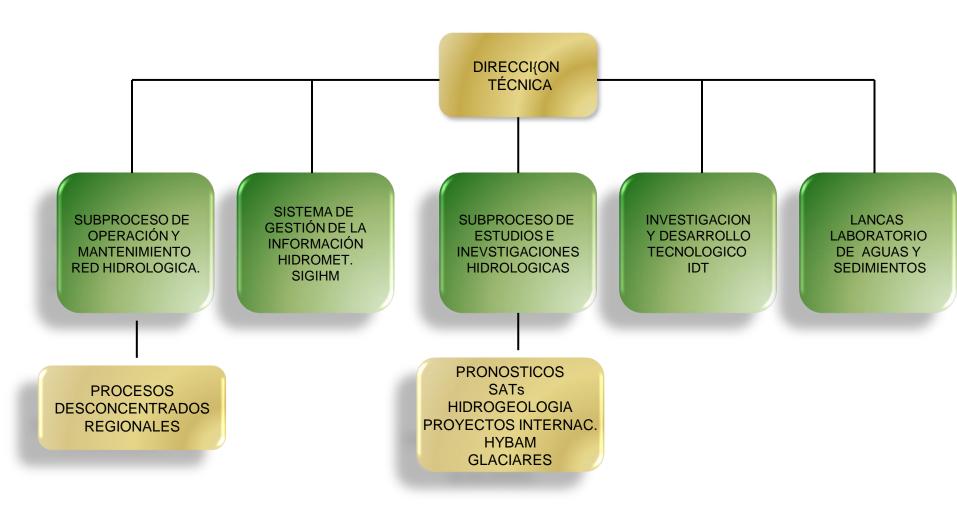
Reunión del Grupo de Trabajo de Hidrología y Recursos Hídricos de la ARIII ORGANIZACIÓN METEOROLÓGICA MUNDIAL

Situación Actual del Estado Operativo de los Sistemas de Observación y de Información Hidrológica en el Ecuador

Asunción , Paraguay
5 al 9 Octubre 2015
Fernando García Cordero

¿ Quienes Somos?


INAMHI es una entidad de carácter científico y técnico, encargada de proveer el servicio Meteorológico e Hidrológico a nivel nacional.

INAMHI es miembro de la Organización Meteorológica Mundial (OMM), organización de las Naciones Unidas especializada en Meteorología, Hidrología operativa y ciencias conexas.

El Instituto Nacional de Meteorología se encuentra adscrito a la SNGR, contribuyendo al desarrollo técnico y socio-económico de la nación.

GESTION HIDROLÓGICA

NUESTRA RED HIDROMETEOROLÓGICA

Estaciones Convencionales

Estaciones Automáticas

PARAMETROS BASICOS

Meteorológicos:

- 1. Temperatura
- 2. Humedad relativa
- 3. Precipitación
- 4. Velocidad del viento
- 5. Dirección del viento
- 6. Presión atmosférica
- 7. Evaporación
- 8. Radiación solar global
- Radiación solar reflejada
- 10. Temperatura de suelo

Hidrológicos:

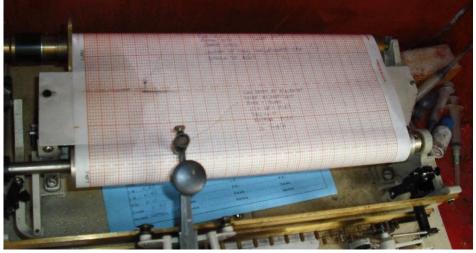
Nivel de agua

Calidad de agua:

- 1. Temperatura de agua
- 2. Ph
- 3. Turbidez
- 4. Conductividad
- 5. Oxígeno disuelto

Caudal

Parámetros Morfométricos


Instrumentación Hidrológica Convencional

Reglas limnimétricas

Instrumentación Hidrológica Automática

Sensores de:

Nivel de agua

Calidad de agua:

- 1. Temperatura de agua
- 2. Ph
- 3. Turbidez
- 4. Conductividad
- 5. Oxígeno disuelto

Multiparamétrico

Radar (RF)

principio de burbuja

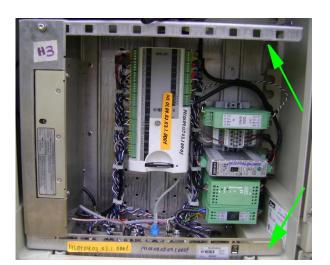
Otros equipos automáticos: Sensores de Caudal

Ultrasónicos:

Registradores electrónicos de datos - dataloggers

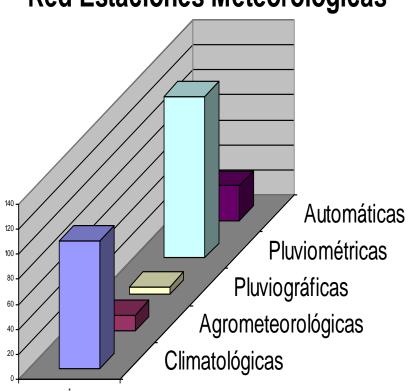
Orphimedes - OTT

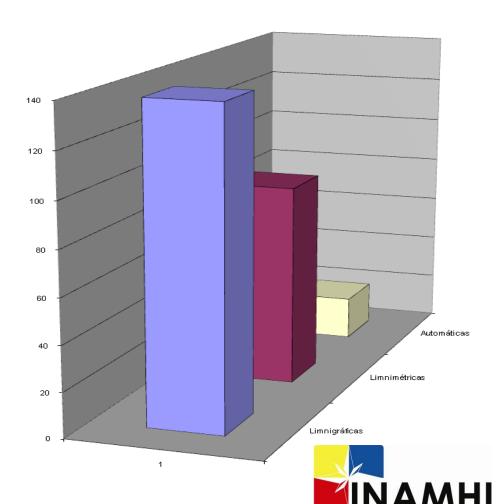
Duosens - OTT


Logotronic

Campbell

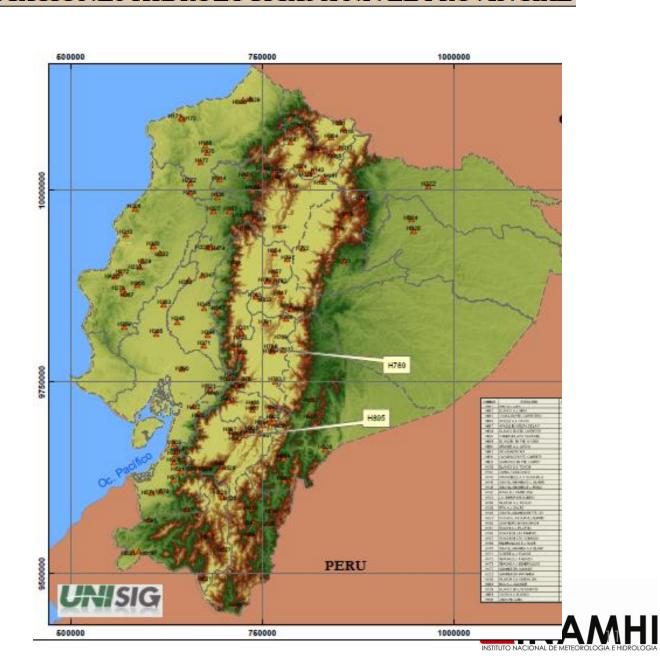
Vaisala


Logosens - OTT



RED DE ESTACIONES HIDROLÓGICAS Y METEOROLÓGICAS

Red de Estaciones Hidrológicas



RED DE ESTACIONES HIDROLÓGICAS A NIVEL PROVINCIAL

150 estaciones Hidrológicas Convencionales

Información registrada por un observador:

7 am 7 pm

RED DE ESTACIONES HIDROLÓGICAS Y METEOROLÓGICAS

Tipo de estación	Cantidad	%
Agrometeorológica	13	5
Climatológica ordinaria	71	27,3
Climatológica principal	37	14,
Pluviográfica	5	1,9
Pluviométrica	134	51,5
Total	260	100

Tipo de estación	Cantidad	%
Limnimétrica	121	62,7
Limnigráfica	29	15,0
Automática	43	22,3
Total	193	100

Medios de comunicación de la red de estaciones Hidrometeorológicas

Estaciones convencionales: (observador/a)

- Telefonía convencional (6)
- SMS (> 30 estaciones)
- Telefonía celular
- Radio HF (>10 estaciones)

Estaciones automáticas:

- GOES: HDRSat (300, 1200 bps)
- •INMARSAT: Iridium, BGAN
- •HISPASAT: Vsat (> 64 kbps)

Spread Spectrum

(2.4 GHz, 5 GHz) (> 50 Mbps)

Calibración de los instrumentos convencionales y automáticos

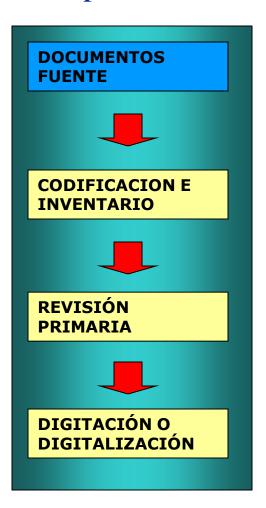
Procedimientos generales de mantenimiento:

- •Todo sensor e instrumento debe contar con su hoja de vida (calibraciones, ajustes, reparaciones, etc). Control metrológico de campo para la verificación de parámetros dentro de un rango establecido.
- Utilización de estaciones hidrometeorologicas de transferencia con trazabilidad para verificación de instrumentación en campo
- •Calibración y ajuste de sensores e instrumentación se realizan en el laboratorio de metrología
- Mecánica de precisión

RECOLECCIÓN, PROCESAMIENTO Y ALMACENAMIENTO DE LA INFORMACIÓN

El procesamiento local de los datos primarios debe estar inscrito en un marco general que incluye las siguientes etapas:

- Recolección de la información
- Procesamiento
- Control de calidad



> Archivo

TAREAS DE PROCESAMIENTO BÁSICO DE DATOS

Pre-proceso

Proceso

Post-proceso

Difusión de la información – www.inamhi.gob.ec

Programas / Servicios Planificación Comunicamos Biblioteca Enlaces > Contacto La Institución Transparencia INAMHI Líneas de Investigación / Yachajuna Meteorología / Suyu pachag Pronóstico del Tiempo / Huayracunata Boletines, Avisos y Alertas / Villajcuna, Monitoreo Meteorológico / ZONA Modelos Numéricos / Hidrología / Yacu manta yachana Información OMM / OMM Villaj Para conocer la travectoria del viento al momento de una erupción ingrese a Pronóstico del tiempo para teléfono "Boletines, avisos y alertas" en nuestra En "Alertas" encontrará el gráfico correspondiente a la trayectoria Rendición de Cuentas 2014 / de la ceniza volcánica en caso de erupción.

Inicio

La Institución

Transparencia

Programas / Servicios

Planificación

Comunicamos

Biblioteca

Enlaces >

Contacto

Inicio > Información en Línea

Busqueda

Información en Línea

MODELOS: PRECIS - HadCM3 | PRECIS - ECHAM | TL959

Tipos de Datos : decenas | mensuales | estacionales | anuales |

Latitud mas al NORTE

PRODUCTOS GENERADOS

Estaciones Automáticas en Línea

Las Estaciones automáticas por medio de sensores calibrados transmiten en tiempo real parámetros climatológicos como: humedad relativa, precipitación temperatura del aire, evaporación, dirección del viento, radiación solar global y reflejada, entre otras.

http://186.42.174.236/InamhiEmas/index.php

DATOS DE ESTACIONES AUTOMATICAS
(ULTIMAS 24 HORAS)

***HULLIP NOLS

**HULLIP NOLS

**HULLIP NO

DEPARTAMENTO DE DESARROLLO DE SISTEMAS DE INFORMACIO TLF: (+693)(02)3871100 EXT: 2039 INSTITUTO NACIONAL DE METEOROLOGIA E HIDROLOGIA (INAMHI)

INAMHI INSTITUTO NACIONAL DE METEOROLOGIA E HIDROLOGIA

06/02/2015 11:34

1 de 2

ESTACIONES AUTOMATICAS

ALERTA PARA INUNDACIONES ESTACIONES HIDROLÓGICAS CON TRANSMISION GOES

ALERTA PARA INUNDACIONES ESTACIONES HIDROLÓGICAS CON TRANSMISION GOES

ALERTA PARA INUNDACIONES ESTACIONES HIDROLÓGICAS CON **TRANSMISION GOES**

REPORTE ESTACION "SANTIAGO EN BATALLON SANTIAGO" TIPO: PRESIÓN CÓDIGO: H1149

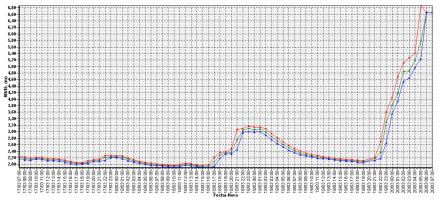
PARAMETRO DE MEDICION:	MEDICION	CALIDAD D
Fecha y hora	29-04-15 11:00:00	
Nivel de Agua Máximo	3,01 m	50
Nivel de Agua Minimo	2,90 m	50
Nivel de Agua Promedio	2,95 m	50
Nivel de Agua Instantáneo	2,92 m	50
Hivel de Agua Desviación Estándar	0,02 m	50
Temperatura del Agua Máxima	20,70 ℃	50
Temperatura del Agua Minima	20,60 ℃	50
Temperatura del Agua Promedio	20,67 °C	50
Temperatura del Agua Instantànea	20,60 °C	50
Temperatura del Agua Desviación Estándar	0,05 °C	50
Voltaie de la Bateria Instantânea	14.14 V	SA.

\$2 49 35
82
Es Transport
7.0

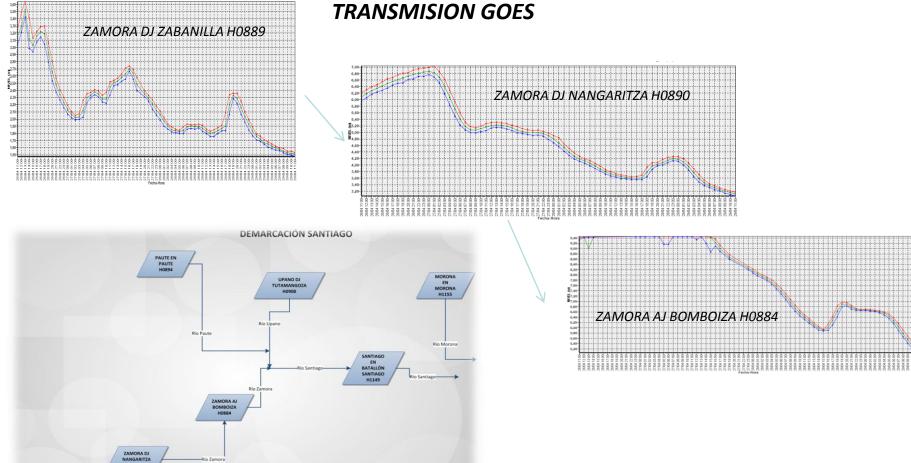
GRAFICAS DE NIVEL DE AGUA

REPORTE ESTACION "BLANCO DJ TOACHI" TIPO: PRESIÓN CÓDIGO: H0138

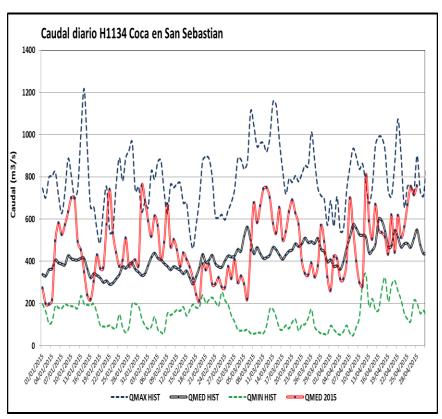
PARAMETRO DE MEDICION:	MEDICION	CALIDAD DE DATO
Fecha y hora	20-03-15 07:00:00	
Hivel de Agua Máximo	6,66 m	51
Hivel de Agua Minimo	6,66 m	51
Hivel de Agua Promedio	6,66 m	51
Hivel de Agua Instantáneo	6,66 m	51
Nivel de Agua Desviación Estándar	0,00 m	53
Temperatura del Agua Máxima	22,10 °C	50
Temperatura del Agua Minima	22,10 °C	50
Temperatura del Agua Promedio	22,10 °C	50
Temperatura del Agua Instantânea	22,10 °C	50
Temperatura del Agua Desviación Estándar	0,00 ℃	50
Voltaje de la Batería Instantánea	13,00 V	50



Estación en Mantenimiento por daño producido con la crecida del 20 de marzo de 2015


GRAFICAS DE NIVEL DE AGUA

ALERTA PARA INUNDACIONES ESTACIONES HIDROLÓGICAS CON



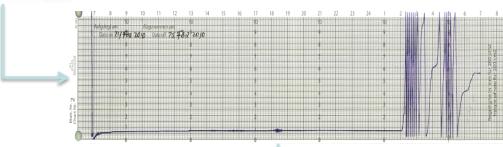
BOLETIN HIDROLÓGICO VARIACION DE NIVELES O CAUDAL ES DIARIOS

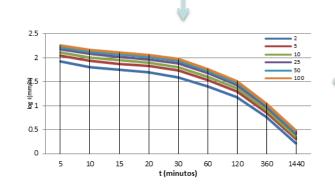
Herramienta de soporte para la gestión de riesgo y recursos hídricos

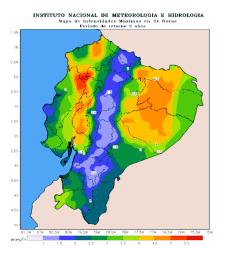
BOLETIN HIDROLÓGICO VARIACION DE NIVELES O CAUDAL ES DIARIOS

RESUMEN HIDROLÓGICO MENSUAL MARZO 2015										
		COORDENA	DAS U.T.M.	CUENCA	UNIDAD	MED	MIN	MAX	MEDIA HISTORICA	deficit o superavit
CODIGO	ESTACIONES	X	Y	COLION	UNIDAD			man.	III LUA 110101COA	deliac o superaric /
H0346	ZAPOTAL EN LECHUGAL	673714	9846121	GUAYAS	Q(m3/s)	356.2	152.2	753.9	341.2	4.4
H894	PAUTE EN PAUTE	751985	9694506	SANTIAGO	Q(m3/s)	54.8	9.6	175.6	57.7	-5.1
H1136	NAPO EN NUEVO ROCAFUERTE	1124495	9898190	NAPO	Q(m3/s)	3283.8	1752.4	5274.9	2338.2	40.4
H1134	COCA EN SAN SEBASTIAN	944681	9962019	COCA	Q(m3/s)	519.9	221.8	748.6	459.8	13.1
H0571	RASPA EN ASERRIO	634416	9623249	SANTA ROSA	Q(m3/s)	5.5	2.4	4.9	1.7	215.2
H0817	PATATE DJ AMBATO	774500	9863183	PASTAZA	Q(m3/s)	27.6	12.5	67.7	30.1	-8.3
H0011	MIRA EN LITA	783826	10096713	MIRA	Q(m3/s)	179.2	92.0	361.3	175.1	2.3
H0349	BABAHOYO EN BABAHOYO	663141	9801624	GUAYAS	N(m)	4.2	2.5	5.6	4.8	-12.1
H0472	CAÑAR EN PTO.INCA	661234	9718834	CAÑAR	N(m)	2.1	1.5	3.8	3.9	-45.0
H0235	CHONE EN PTE EL VERGEL	600855	9923507	CHONE	N(m)	2.1	1.1	4.0	1.9	10.4
H0017	CHOTA EN PTE.CARRETERA	825505	10052690	MIRA	Q(m3/s)	35.6	18.9	70.6	28.1	26.8
H0172	GUAYLLABAMBA AJ BLANCO	678487	10048124	ESMERALDAS	Q(m3/s)	423.3	249.1	1293.5	534.3	-20.8
H0349	QUEVEDO EN QUEVEDO	670838	9887344	GUAYAS	Q(m3/s)	474.6	210.3	1274.9	508.2	-6.6
H0373	SAN PABLO EN PALMAR	673334	9797050	GUAYAS	Q(m3/s)	181.5	62.9	277.7	162.2	11.9
H0591	PUYANGO AJ MARCABELI	618530	9576836	PUYANGO	Q(m3/s)	244.4	92.8	499.4	160.5	52.3
H0792	CEBADAS AJ GUAMOTE	762725	9791230	PASTAZA	Q(m3/s)	22.3	14.4	39.9	13.8	61.9
H0892	ZAMORA DJ NANGARITZA	762090	9583770	SANTIAGO	Q(m3/s)	855.4	402.3	1474.4	639.2	33.8
H0450	PAYO AJ BULUBULU	681714	9739409	TAURA	Q(m3/s)	94.0	23.3	340.0	61.4	53.2
H0891	ZAMORA DJ SABANILLA (EN ZAMORA)	727809	9550921	SANTIAGO	Q(m3/s)	130.7	43.8	262.8	81.0	61.4
H1134	COCA EN SAN SEBASTIAN	944681	9962019	COCA	Q(m3/s)	494.5	221.8	748.6	459.8	7.5

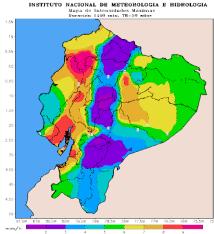
Imprescindible para la planificación de obras hidráulicas, carreteras, redes de alcantarillado, el diseño de los sistemas de drenaje de las aguas pluviales en grandes instalaciones y edificios en general, la optimización de recursos hidráulicos en cuencas hidrográficas y la prevención de crecidas.

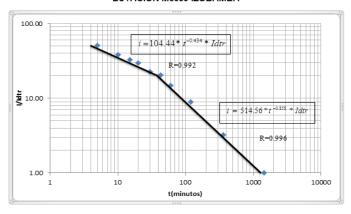






$$I = \frac{K * T^m}{t^n}$$

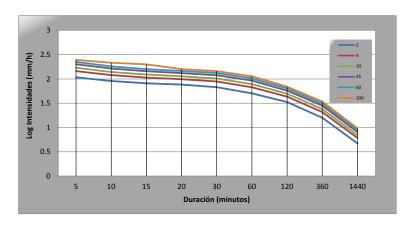

$$i = K * t^{-n} * Idtr$$



$$i = K * t^{-n} * Idtr$$

$$I = \frac{K * T^m}{t^n}$$

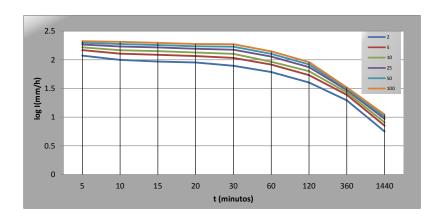
GRAFICO N° 1: CURVAS DE INTENSIDAD-DURACIÓN Y FRECUENCIA PARA LA ESTACIÓN M0003-IZOBAMBA


CUADRO Nº 2: INTENSIDAD DURACIÓN FRECUENCIAESTACIÓN M0003 IZOBAMBA

STA	ACIÓN	INTERVALOS DE TIEMPO	ECHACIONEC	R	R ²
CÓDIGO	NOMBRE	(minutos)	ECUACIONES		*
		5 < 30	$i = 164.212 * T^{0.1650} * t^{-0.4326}$	0.9825	0.9652
M0003	IZOBAMBA	30<120	$i = 371.072 * T^{0.1575} * t^{-0.6771}$	0.9947	0.9895
		120<1440	$i = 929.503 * T^{-0.1614} * t^{-0.8773}$	0.9990	0.9981

CUADRO N° 3: INTENSIDAD DURACIÓN FRECUENCIA ESTACIÓN M0027 SANTO DOMINGO

I	ESTACIÓN	INTERVALOS DE TIEMPO	ECHA CIONEC	D	D?
CÓDIGO	NOMBRE	(minutos)	ECUACIONES	К	R ²
M0027	CANTO DOMINGO	5 < 120	$i = 198.189 * T^{0.2058} * t^{-0.3824}$	0.9824	0.9651
M0027	SANTO DOMINGO	120< 1440	$i = 1474.626 * T^{0.1833} * t^{-0.7945}$	0.9956	0.9913

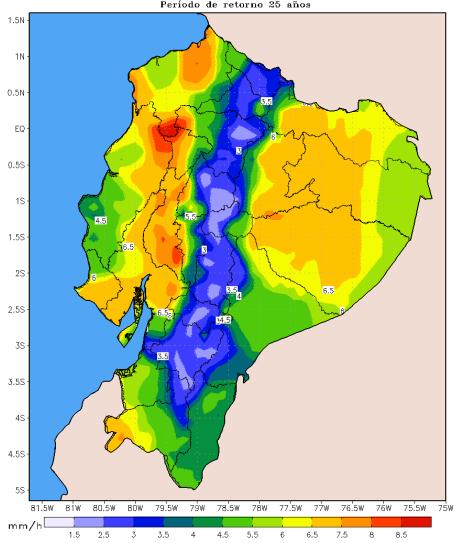


t(mi	n)	Pe	ríodo de Re	torno T(año:	s)	
	2	5	10	25	50	100
5	123.5	149.2	172.0	207.7	239.6	276.3
10	94.8	114.4	132.0	159.4	183.8	212.0
15	81.2	98.0	113.0	136.5	157.4	181.5
20	72.7	87.8	101.2	122.3	141.0	162.6
30	62.3	75.2	86.7	104.7	120.7	139.3
60	47.8	57.7	66.5	80.3	92.6	106.8
120	37.3	44.1	50.1	59.3	67.3	76.4
360	15.6	18.4	20.9	24.8	28.1	31.9
1440	5.2	6.1	7.0	8.2	9.3	10.6

INTENSIDAD MAXIMA (mm/h)

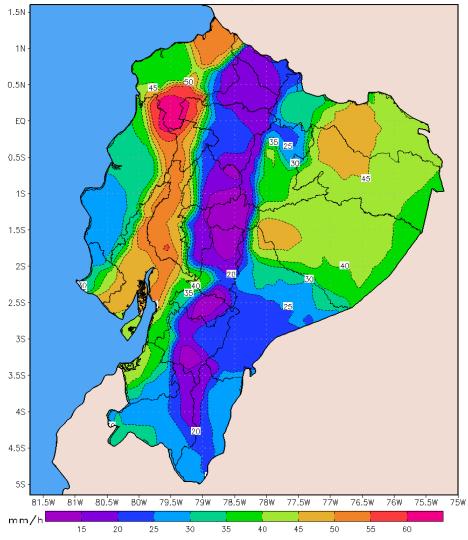
CUADRO N° 1: INTENSIDAD DURACIÓN FRECUENCIA ESTACIÓN M0025 LA CONCORDIA

E	STACIÓN	INTERVALOS DE TIEMPO	POWA GLOVIEG	R	R ²
CÓDIGO	NOMBRE	(minutos)	ECUACIONES		
		5 < 30	$i = 127.2355 * T^{0.1819} * t^{-0.1363}$	0.9811	0.9626
M0025	LA CONCORDIA	30<120	$i = 337.9275 * T^{0.1941} * t^{-0.4454}$	0.9589	0.9196
		120 < 1440	$i = 1999.94 * T^{0.1726} * t^{-0.8161}$	0.9961	0.9923



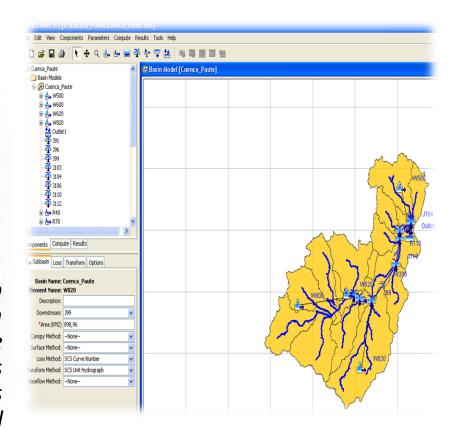
		Perío	do de Retor	no T (años)		
(min)	2	5	10	25	50	100
5	115.9	136.9	155.3	183.5	208.2	236.1
10	105.5	124.6	141.3	167.0	189.4	214.8
15	99.8	117.9	133.7	158.0	179.2	203.3
20	95.9	113.3	128.6	151.9	172.3	195.5
30	85.0	101.5	116.1	138.8	158.7	181.6
60	62.4	74.6	85.3	101.9	1 16.6	133.4
120	45.3	53.1	59.8	70.1	79.0	89.0
360	18.5	21.7	24.4	28.6	32.2	36.3
440	6.0	7.0	7.9	2/2	N10.4	A'À L
			INTENSIDAD	MAXIMA (run/h		VVI I

ESTUDIO: ACTUALIZACION DE INTENSIDADES MAXIMAS EN EL ECUADOR

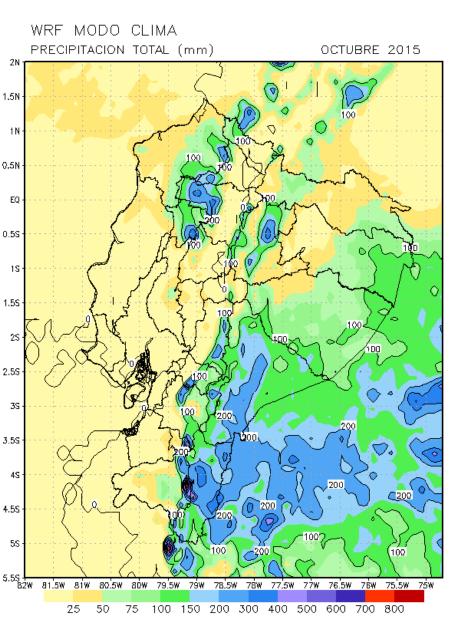

INSTITUTO NACIONAL DE METEOROLOGIA E HIDROLOGIA

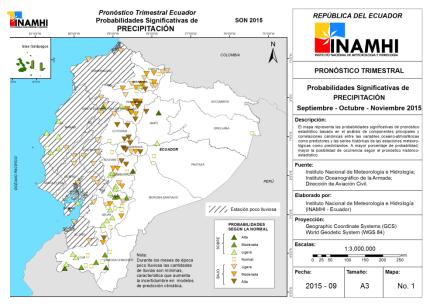
Mapa de Intensidades Máximas en 24 Horas Período de retorno 25 años

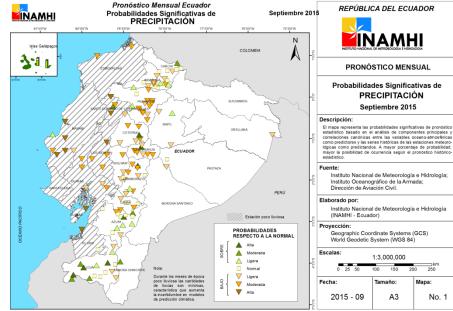
INSTITUTO NACIONAL DE METEOROLOGIA E HIDROLOGIA


Mapa de Intensidades Máximas Duración 120 min, TR=10 años

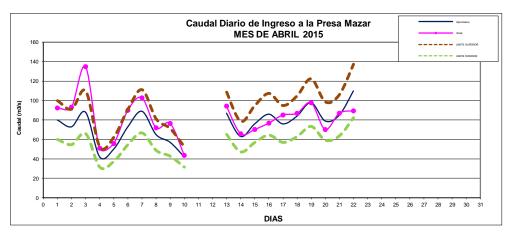
CAUDAL INGRESO PRESA MAZAR

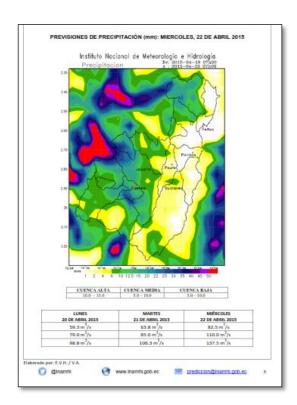

El pronóstico de caudales de ingreso al Embalse Mazar, durante el año, sirve para que Hidropaute regule y maneje el nivel del embalse de acuerdo a sus necesidades, para la entrega y venta de energía eléctrica al mercado nacional.


Con base a la información del pronóstico meteorológico y los datos hidrológicos en tiempo real, obtenidos de las estaciones de observación e ingresados a los modelos hidrológicos seleccionados, se obtienen los valores de caudal diarios de ingreso al embalse.



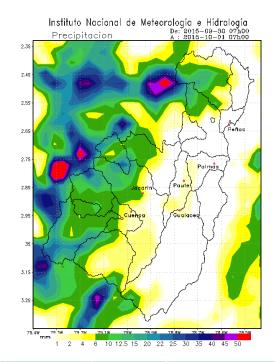
PRONOSTICO A MEDIANO PLAZO

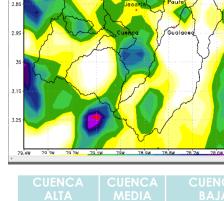


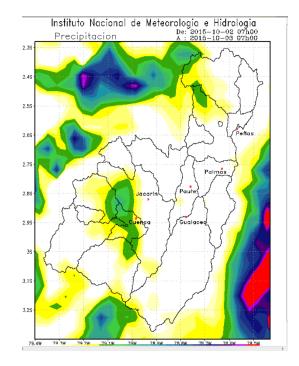


PRODUCTOS GENERADOS

Boletines de Pronóstico Hidrológico que contienen valores de caudales previstos diarios de ingreso al embalse en concordancia con la precipitación pronosticada, al momento dan una certeza del 80% (error del 20%). Esta información se publican los días lunes, miércoles y viernes de cada semana.







PRONOSTICO A CORTO PLAZO

Instituto Nacional de Meteorologia e Hidrologia Precipitacion De: 2015-10-01 07500 A: 2015-10-02 07500

CUENCA ALTA	CUENCA MEDIA	CUENCA BAJA
0.0 – 2.0	0.0 – 1.0	0.0 - 3.0

	IENCA	CUENCA	CUENCA
	ALTA	MEDIA	Baja
0.0	0 – 2.0	0.0 - 3.0	0.0 - 2.0

CUENCA ALTA	CUENCA MEDIA	CUENCA BAJA
0.0 –3.0	0.0 - 3.0	0.0 –2.0

MIERCOLES	JUEVES	VIERNES
30 SEPTIEMBRE 2015	01 OCTUBRE 2015	02 OCTUBRE 2015
31.5 m ³ /s	36.0 m ³ /s	46.5 m ³ /s
42.0 m ³ /s	48.0 m ³ /s	62.0 m ³ /s
52.5 m ³ /s	60.0 m ³ /s	77.5 m ³ /s

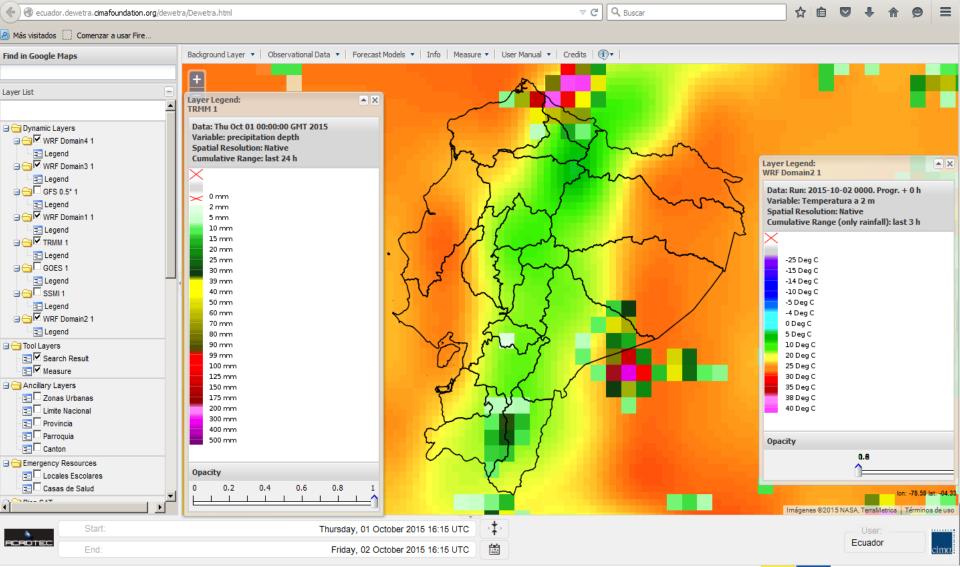
Dewetra es una plataforma de pronóstico y monitoreo "multi-riesgo" que se encarga de recolectar y sistematizar todos los datos registrados de una forma automática o manual y de producir elaboraciones con valor agregado: las observaciones terrestres y modelos de previsión son integrados con datos de vulnerabilidad y exposición para producir escenarios de riesgo en tiempo real. Desarrollada entre el Departamento de Protección Civil Italiana y la Fundación CIMA, Centro Internacional de Monitoreo Ambiental, para contribuir a la previsión de riesgos hidrometeorológicos y la mitigación.

Participación en el "WORKSHOP ON DEWETRA PLATAFORM" organizado por la OMM y Protección Civil de Italia 28-30/octubre 2013

Plataforma implantada remotamente en el INAMHI en los meses de mayo a julio/2014, luego de aprobar la OMM el requerimiento de asistencia técnica para su implementación y de entrenamiento.

Taller de "Formación en la utilización de la plataforma Dewetra en el Ecuador" 5 al 7 de Agosto de 2014.

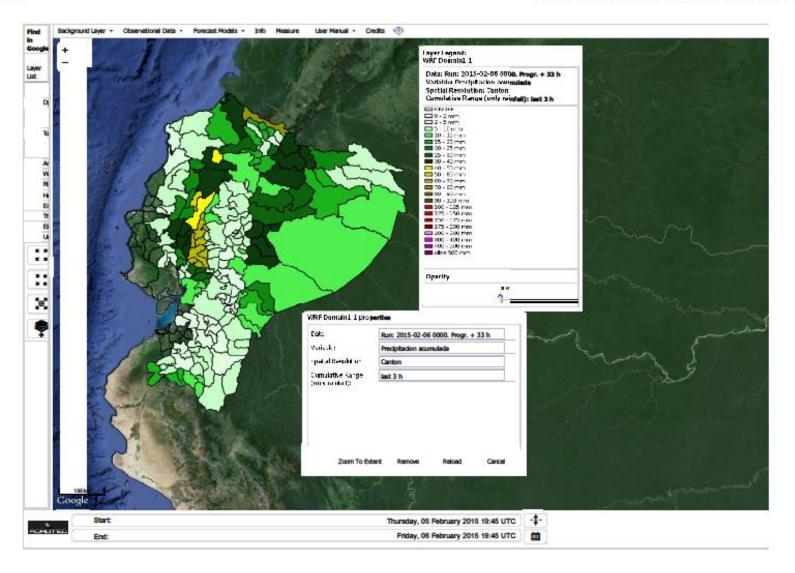
Implementación de capas estáticas y dinámicas

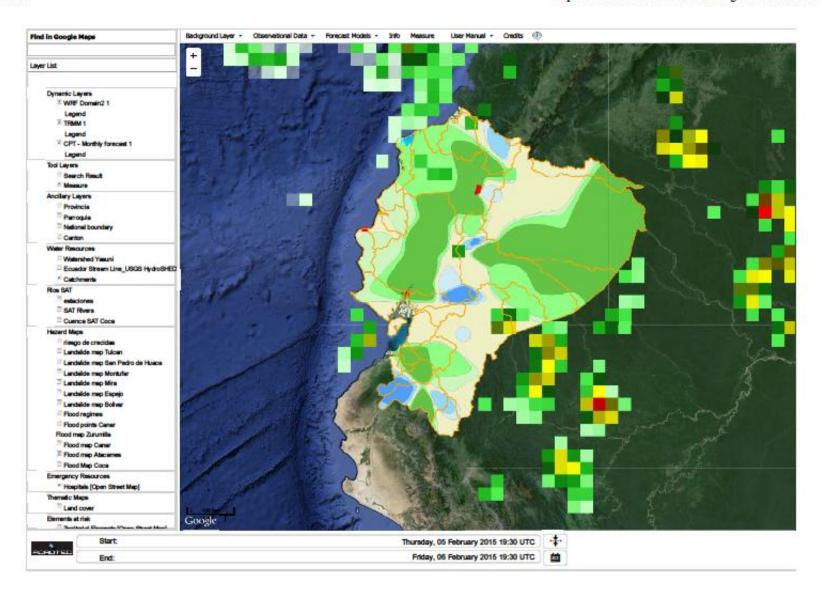

Visualización: WRF: 4 dominios, CPT: trimestral y mes.

GFS: 0.5°

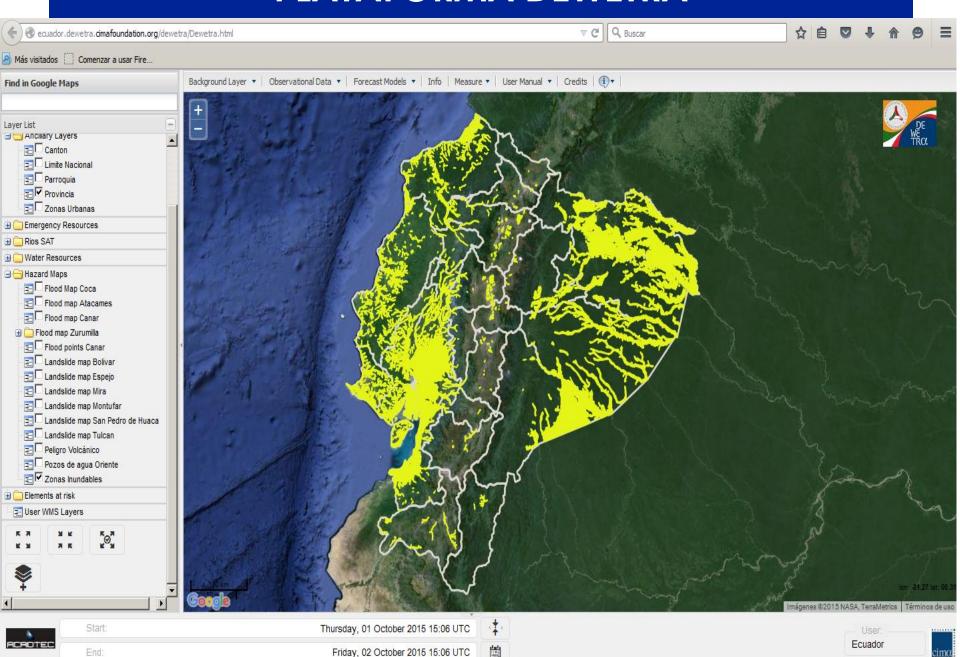
Imag. Satélites: TRMM, GOES, SONDEOS

http://ecuador.dewetra.cimafoundation.org/dewetra/




Dewetra

http://ecuador.dewetra.cimafoundation.org/dewetra/Dewetra.html



Dewetra

http://ecuador.dewetra.cimafoundation.org/dewetra/Dewetra.html

www.inamhi.gob.ec

Para mayor información Iñaquito N36-14 y Corea Quito - Ecuador

Telefax: (593-2) 292 22 14

E-Mail: jgarcia@inamhi.gob.ec

MUCHAS GRACIAS POR SU ATENCION